3.3.50 \(\int \frac {\sqrt {x} (A+B x^2)}{\sqrt {b x^2+c x^4}} \, dx\) [250]

3.3.50.1 Optimal result
3.3.50.2 Mathematica [C] (verified)
3.3.50.3 Rubi [A] (verified)
3.3.50.4 Maple [A] (verified)
3.3.50.5 Fricas [C] (verification not implemented)
3.3.50.6 Sympy [F]
3.3.50.7 Maxima [F]
3.3.50.8 Giac [F]
3.3.50.9 Mupad [F(-1)]

3.3.50.1 Optimal result

Integrand size = 28, antiderivative size = 130 \[ \int \frac {\sqrt {x} \left (A+B x^2\right )}{\sqrt {b x^2+c x^4}} \, dx=\frac {2 B \sqrt {b x^2+c x^4}}{3 c \sqrt {x}}-\frac {(b B-3 A c) x \left (\sqrt {b}+\sqrt {c} x\right ) \sqrt {\frac {b+c x^2}{\left (\sqrt {b}+\sqrt {c} x\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right ),\frac {1}{2}\right )}{3 \sqrt [4]{b} c^{5/4} \sqrt {b x^2+c x^4}} \]

output
2/3*B*(c*x^4+b*x^2)^(1/2)/c/x^(1/2)-1/3*(-3*A*c+B*b)*x*(cos(2*arctan(c^(1/ 
4)*x^(1/2)/b^(1/4)))^2)^(1/2)/cos(2*arctan(c^(1/4)*x^(1/2)/b^(1/4)))*Ellip 
ticF(sin(2*arctan(c^(1/4)*x^(1/2)/b^(1/4))),1/2*2^(1/2))*(b^(1/2)+x*c^(1/2 
))*((c*x^2+b)/(b^(1/2)+x*c^(1/2))^2)^(1/2)/b^(1/4)/c^(5/4)/(c*x^4+b*x^2)^( 
1/2)
 
3.3.50.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.07 (sec) , antiderivative size = 80, normalized size of antiderivative = 0.62 \[ \int \frac {\sqrt {x} \left (A+B x^2\right )}{\sqrt {b x^2+c x^4}} \, dx=\frac {2 x^{3/2} \left (B \left (b+c x^2\right )+(-b B+3 A c) \sqrt {1+\frac {c x^2}{b}} \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {1}{2},\frac {5}{4},-\frac {c x^2}{b}\right )\right )}{3 c \sqrt {x^2 \left (b+c x^2\right )}} \]

input
Integrate[(Sqrt[x]*(A + B*x^2))/Sqrt[b*x^2 + c*x^4],x]
 
output
(2*x^(3/2)*(B*(b + c*x^2) + (-(b*B) + 3*A*c)*Sqrt[1 + (c*x^2)/b]*Hypergeom 
etric2F1[1/4, 1/2, 5/4, -((c*x^2)/b)]))/(3*c*Sqrt[x^2*(b + c*x^2)])
 
3.3.50.3 Rubi [A] (verified)

Time = 0.27 (sec) , antiderivative size = 130, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {1945, 1431, 266, 761}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {x} \left (A+B x^2\right )}{\sqrt {b x^2+c x^4}} \, dx\)

\(\Big \downarrow \) 1945

\(\displaystyle \frac {2 B \sqrt {b x^2+c x^4}}{3 c \sqrt {x}}-\frac {(b B-3 A c) \int \frac {\sqrt {x}}{\sqrt {c x^4+b x^2}}dx}{3 c}\)

\(\Big \downarrow \) 1431

\(\displaystyle \frac {2 B \sqrt {b x^2+c x^4}}{3 c \sqrt {x}}-\frac {x \sqrt {b+c x^2} (b B-3 A c) \int \frac {1}{\sqrt {x} \sqrt {c x^2+b}}dx}{3 c \sqrt {b x^2+c x^4}}\)

\(\Big \downarrow \) 266

\(\displaystyle \frac {2 B \sqrt {b x^2+c x^4}}{3 c \sqrt {x}}-\frac {2 x \sqrt {b+c x^2} (b B-3 A c) \int \frac {1}{\sqrt {c x^2+b}}d\sqrt {x}}{3 c \sqrt {b x^2+c x^4}}\)

\(\Big \downarrow \) 761

\(\displaystyle \frac {2 B \sqrt {b x^2+c x^4}}{3 c \sqrt {x}}-\frac {x \left (\sqrt {b}+\sqrt {c} x\right ) \sqrt {\frac {b+c x^2}{\left (\sqrt {b}+\sqrt {c} x\right )^2}} (b B-3 A c) \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right ),\frac {1}{2}\right )}{3 \sqrt [4]{b} c^{5/4} \sqrt {b x^2+c x^4}}\)

input
Int[(Sqrt[x]*(A + B*x^2))/Sqrt[b*x^2 + c*x^4],x]
 
output
(2*B*Sqrt[b*x^2 + c*x^4])/(3*c*Sqrt[x]) - ((b*B - 3*A*c)*x*(Sqrt[b] + Sqrt 
[c]*x)*Sqrt[(b + c*x^2)/(Sqrt[b] + Sqrt[c]*x)^2]*EllipticF[2*ArcTan[(c^(1/ 
4)*Sqrt[x])/b^(1/4)], 1/2])/(3*b^(1/4)*c^(5/4)*Sqrt[b*x^2 + c*x^4])
 

3.3.50.3.1 Defintions of rubi rules used

rule 266
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{k = De 
nominator[m]}, Simp[k/c   Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(2*k)/c^2)) 
^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && FractionQ[m] && I 
ntBinomialQ[a, b, c, 2, m, p, x]
 

rule 761
Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[( 
1 + q^2*x^2)*(Sqrt[(a + b*x^4)/(a*(1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^4]))* 
EllipticF[2*ArcTan[q*x], 1/2], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]
 

rule 1431
Int[((d_.)*(x_))^(m_)*((b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp 
[(b*x^2 + c*x^4)^p/((d*x)^(2*p)*(b + c*x^2)^p)   Int[(d*x)^(m + 2*p)*(b + c 
*x^2)^p, x], x] /; FreeQ[{b, c, d, m, p}, x] &&  !IntegerQ[p]
 

rule 1945
Int[((e_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(jn_.))^(p_)*((c_) + 
(d_.)*(x_)^(n_.)), x_Symbol] :> Simp[d*e^(j - 1)*(e*x)^(m - j + 1)*((a*x^j 
+ b*x^(j + n))^(p + 1)/(b*(m + n + p*(j + n) + 1))), x] - Simp[(a*d*(m + j* 
p + 1) - b*c*(m + n + p*(j + n) + 1))/(b*(m + n + p*(j + n) + 1))   Int[(e* 
x)^m*(a*x^j + b*x^(j + n))^p, x], x] /; FreeQ[{a, b, c, d, e, j, m, n, p}, 
x] && EqQ[jn, j + n] &&  !IntegerQ[p] && NeQ[b*c - a*d, 0] && NeQ[m + n + p 
*(j + n) + 1, 0] && (GtQ[e, 0] || IntegerQ[j])
 
3.3.50.4 Maple [A] (verified)

Time = 2.16 (sec) , antiderivative size = 175, normalized size of antiderivative = 1.35

method result size
risch \(\frac {2 B \,x^{\frac {3}{2}} \left (c \,x^{2}+b \right )}{3 c \sqrt {x^{2} \left (c \,x^{2}+b \right )}}+\frac {\left (3 A c -B b \right ) \sqrt {-b c}\, \sqrt {\frac {\left (x +\frac {\sqrt {-b c}}{c}\right ) c}{\sqrt {-b c}}}\, \sqrt {-\frac {2 \left (x -\frac {\sqrt {-b c}}{c}\right ) c}{\sqrt {-b c}}}\, \sqrt {-\frac {x c}{\sqrt {-b c}}}\, F\left (\sqrt {\frac {\left (x +\frac {\sqrt {-b c}}{c}\right ) c}{\sqrt {-b c}}}, \frac {\sqrt {2}}{2}\right ) \sqrt {x}\, \sqrt {x \left (c \,x^{2}+b \right )}}{3 c^{2} \sqrt {c \,x^{3}+b x}\, \sqrt {x^{2} \left (c \,x^{2}+b \right )}}\) \(175\)
default \(\frac {\sqrt {x}\, \left (3 A \sqrt {-b c}\, \sqrt {\frac {c x +\sqrt {-b c}}{\sqrt {-b c}}}\, \sqrt {2}\, \sqrt {\frac {-c x +\sqrt {-b c}}{\sqrt {-b c}}}\, \sqrt {-\frac {x c}{\sqrt {-b c}}}\, F\left (\sqrt {\frac {c x +\sqrt {-b c}}{\sqrt {-b c}}}, \frac {\sqrt {2}}{2}\right ) c -B \sqrt {-b c}\, \sqrt {\frac {c x +\sqrt {-b c}}{\sqrt {-b c}}}\, \sqrt {2}\, \sqrt {\frac {-c x +\sqrt {-b c}}{\sqrt {-b c}}}\, \sqrt {-\frac {x c}{\sqrt {-b c}}}\, F\left (\sqrt {\frac {c x +\sqrt {-b c}}{\sqrt {-b c}}}, \frac {\sqrt {2}}{2}\right ) b +2 B \,c^{2} x^{3}+2 B b c x \right )}{3 \sqrt {x^{4} c +b \,x^{2}}\, c^{2}}\) \(216\)

input
int((B*x^2+A)*x^(1/2)/(c*x^4+b*x^2)^(1/2),x,method=_RETURNVERBOSE)
 
output
2/3*B/c*x^(3/2)*(c*x^2+b)/(x^2*(c*x^2+b))^(1/2)+1/3*(3*A*c-B*b)/c^2*(-b*c) 
^(1/2)*((x+1/c*(-b*c)^(1/2))*c/(-b*c)^(1/2))^(1/2)*(-2*(x-1/c*(-b*c)^(1/2) 
)*c/(-b*c)^(1/2))^(1/2)*(-x*c/(-b*c)^(1/2))^(1/2)/(c*x^3+b*x)^(1/2)*Ellipt 
icF(((x+1/c*(-b*c)^(1/2))*c/(-b*c)^(1/2))^(1/2),1/2*2^(1/2))*x^(1/2)/(x^2* 
(c*x^2+b))^(1/2)*(x*(c*x^2+b))^(1/2)
 
3.3.50.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.14 (sec) , antiderivative size = 51, normalized size of antiderivative = 0.39 \[ \int \frac {\sqrt {x} \left (A+B x^2\right )}{\sqrt {b x^2+c x^4}} \, dx=-\frac {2 \, {\left ({\left (B b - 3 \, A c\right )} \sqrt {c} x {\rm weierstrassPInverse}\left (-\frac {4 \, b}{c}, 0, x\right ) - \sqrt {c x^{4} + b x^{2}} B c \sqrt {x}\right )}}{3 \, c^{2} x} \]

input
integrate((B*x^2+A)*x^(1/2)/(c*x^4+b*x^2)^(1/2),x, algorithm="fricas")
 
output
-2/3*((B*b - 3*A*c)*sqrt(c)*x*weierstrassPInverse(-4*b/c, 0, x) - sqrt(c*x 
^4 + b*x^2)*B*c*sqrt(x))/(c^2*x)
 
3.3.50.6 Sympy [F]

\[ \int \frac {\sqrt {x} \left (A+B x^2\right )}{\sqrt {b x^2+c x^4}} \, dx=\int \frac {\sqrt {x} \left (A + B x^{2}\right )}{\sqrt {x^{2} \left (b + c x^{2}\right )}}\, dx \]

input
integrate((B*x**2+A)*x**(1/2)/(c*x**4+b*x**2)**(1/2),x)
 
output
Integral(sqrt(x)*(A + B*x**2)/sqrt(x**2*(b + c*x**2)), x)
 
3.3.50.7 Maxima [F]

\[ \int \frac {\sqrt {x} \left (A+B x^2\right )}{\sqrt {b x^2+c x^4}} \, dx=\int { \frac {{\left (B x^{2} + A\right )} \sqrt {x}}{\sqrt {c x^{4} + b x^{2}}} \,d x } \]

input
integrate((B*x^2+A)*x^(1/2)/(c*x^4+b*x^2)^(1/2),x, algorithm="maxima")
 
output
integrate((B*x^2 + A)*sqrt(x)/sqrt(c*x^4 + b*x^2), x)
 
3.3.50.8 Giac [F]

\[ \int \frac {\sqrt {x} \left (A+B x^2\right )}{\sqrt {b x^2+c x^4}} \, dx=\int { \frac {{\left (B x^{2} + A\right )} \sqrt {x}}{\sqrt {c x^{4} + b x^{2}}} \,d x } \]

input
integrate((B*x^2+A)*x^(1/2)/(c*x^4+b*x^2)^(1/2),x, algorithm="giac")
 
output
integrate((B*x^2 + A)*sqrt(x)/sqrt(c*x^4 + b*x^2), x)
 
3.3.50.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {x} \left (A+B x^2\right )}{\sqrt {b x^2+c x^4}} \, dx=\int \frac {\sqrt {x}\,\left (B\,x^2+A\right )}{\sqrt {c\,x^4+b\,x^2}} \,d x \]

input
int((x^(1/2)*(A + B*x^2))/(b*x^2 + c*x^4)^(1/2),x)
 
output
int((x^(1/2)*(A + B*x^2))/(b*x^2 + c*x^4)^(1/2), x)